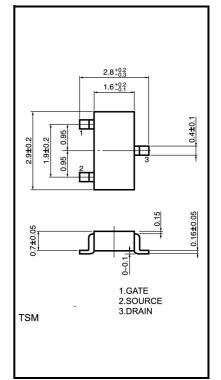


SSM3J02T

Unit: mm


- $\bullet \quad {\rm Component\ package\ suitable\ for\ high-density\ mounting}$
- Small Package
- Low ON Resistance : $R_{on} = 0.5 \Omega (max) (@V_{GS} = -4 V)$

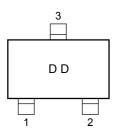
 $: R_{on} = 0.7 \ \Omega \ (max) \ (@V_{GS} = -2.5 \ V)$

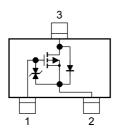
Low-voltage operation possible

Maximum Ratings (Ta = 25°C)

Characteristic		Symbol	Rating	Unit
Drain-Source voltage		V _{DS}	-30	V
Gate-Source voltage		V _{GSS}	±10	V
Drain current	DC	I _D	-1.5	
	Pulse	I _{DP} (Note2)	-3.0	A
Drain power dissipation (Ta = 25°C)		P _D (Note1)	1250	mW
Channel temperature		T _{ch}	150	°C
Storage temperature range		T _{stg}	–55 to 150	°C

Weight: 10 mg (typ.)


Note1: Mounted on FR4 board


 $(25.4 \text{ mm} \times 25.4 \text{ mm} \times 1.6 \text{ t}, \text{ Cu pad: 645 mm2}, \text{ t} = 10 \text{ s})$

Note2: The pulse width limited by max channel temperature.

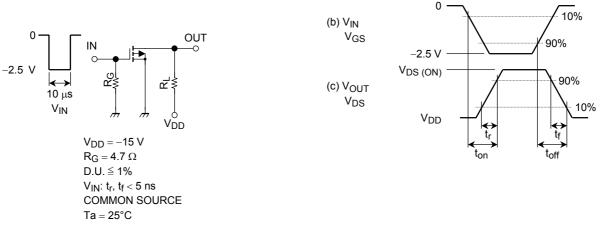
Marking

Equivalent Circuit

Handling Precaution

When handling individual devices (which are not yet mounted on a circuit board), be sure that the environment is protected against electrostatic electricity. Operators should wear anti-static clothing, and containers and other objects that come into direct contact with devices should be made of anti-static materials.

Electrical Characteristics (Ta = 25°C)


SSM3J02T

Characteristic		Symbol	Test Condition	Min	Тур.	Max	Unit
Gate leakage current		I _{GSS}	$V_{GS}=\pm 10~V,~V_{DS}=0$	_		±1	μA
Drain-Source breakdown voltage		V (BR) DSS	$I_D = -1 \text{ mA}, V_{GS} = 0$	-30			V
Drain Cut-off current		I _{DSS}	$V_{DS} = -30 \text{ V}, \text{ V}_{GS} = 0$	_		-1	μA
Gate threshold voltage		V _{th}	$V_{DS} = -3 V$, $I_D = -0.1 mA$	-0.6		-1.1	V
Forward transfer admittance		Y _{fs}	$V_{DS} = -3 V, I_D = -0.3 A$ (Note3)	0.6		_	S
Drain-Source ON resistance		R _{DS (ON)}	$I_D = -0.3 \text{ A}, V_{GS} = -4 \text{ V}$ (Note3)		0.4	0.5	Ω
			$I_D = -0.3 \text{ A}, V_{GS} = -2.5 \text{ V}$ (Note3)		0.55	0.7	
Input capacitance		C _{iss}	$V_{DS} = -10 \text{ V}, \text{ V}_{GS} = 0, \text{ f} = 1 \text{ MHz}$		150		pF
Reverse transfer capacitance		C _{rss}	$V_{DS} = -10 \text{ V}, \text{ V}_{GS} = 0, \text{ f} = 1 \text{ MHz}$		21	_	pF
Output capacitance		C _{oss}	$V_{DS} = -10 \text{ V}, \text{ V}_{GS} = 0, \text{ f} = 1 \text{ MHz}$		61	_	pF
Switching time	Turn-on time	t _{on}	V _{DD} = -15 V, I _D = -0.3 A,	_	55	_	ns
	Turn-off time	t _{off}	$V_{GS} = 0$ to -2.5 V, $R_G = 4.7 \Omega$	_	52	_	

Note3: Pulse test

Switching Time Test Circuit

(a) Test circuit

Precaution

 V_{th} can be expressed as voltage between gate and source when low operating current value is ID = $-100~\mu A$ for this product. For normal switching operation, V_{GS} (on) requires higher voltage than V_{th} and V_{GS} (off) requires lower voltage than V_{th} .

(relationship can be established as follows: VGS (off) < Vth < VGS (on))

Please take this into consideration for using the device.

 $\rm VGS$ recommended voltage of –2.5 V or higher to turn on this product.